Yazar "Chormey, Doste Selali" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Nickel hydroxide nanoflower-based dispersive solid-phase extraction of copper from water matrix(Wiley, 2023) Şaylan, Meltem; Demirel, Rabia; Fırat Ayyıldız, Merve; Chormey, Doste Selali; Çetin, Gülten; Bakırdere, SezginIn this work, a dispersive solid-phase extraction method based on Ni(OH)2 nanoflowers (Ni(OH)2-NFs-DSPE) was developed to separate and preconcentrate copper ions from tap water samples for determination by flame atomic absorption spectrometry (FAAS). Ni(OH)2-NFs was synthesized using a homogeneous precipitation technique and used as sorbent for copper preconcentration. X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy were used to characterize the synthesized sorbent. All experimental variables were carefully optimized to achieve a high enhancement factor of 107.5-folds with respect to the detection sensitivity of the conventional FAAS. The proposed method's analytical parameters including LOD, LOQ, and linear range were determined as 1.33 μg/L, 4.42 μg/L, and 3.0-40 μg/L, respectively. To assess the applicability and reliability of the developed method, optimal conditions were applied to tap water samples and satisfactory percent recoveries (94-103%) were obtained for the samples spiked at 20 and 30 μg/L. This validated the accuracy and feasibility of the developed method to real samples. The developed method can be described as a simple, efficient, and rapid analytical approach for the accurate determination of trace copper ions in water samples.Yayın Ultraviolet-assisted Fenton digestion of peach juice for the determination of nickel by flame atomic absorption spectrometry (FAAS)(Taylor & Francis, 2023) Fırat Ayyıldız, Merve; Şaylan, Meltem; Yazıcı, Elif; Chormey, Doste Selali; Bakırdere, SezginThis study describes a simple and efficient UV–Fenton digestion of peach juice for nickel determination by flame atomic absorption spectrometry (FAAS). Herein, a hybrid of magnetic nanoparticles (MNPs) and hydrogen peroxide were used to digest the peach juice with UV irradiation. The effects of experimental parameters were systematically optimized to obtain the best digestion conditions. A laboratory-scale closed-box isolated reactor setup was designed for the digestion experiments in this study. A low relative standard deviation of 6.8% for the lowest calibration standard established the digestion method’s good precision for replicate samples. Several peach juice samples were utilized in spike recovery experiments to validate the method’s applicability and accuracy. The recoveries calculated for the samples spiked at four concentrations were satisfactory (92–106%), indicating that this simple and effective analytical approach can be utilized as an alternative to conventional microwave digestion.