Yazar "Ulukaya, Engin" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Apoptosis-inducing, anti-angiogenic and anti-migratory effects of a dinuclear Pd(II) complex on breast cancer: A promising novel compound(Elsevier, 2024) Erkısa Genel, Merve; Adacan, Kaan; Selvi, Selin; Erol Kutucu, Deniz; Üvez, Ayça; Armutak, Elif İlkay; Şengül, Abdurrahman; Ulukaya, Engin; Gürel Gürevin, EbruBecause of the high mortality and morbidity rate of breast cancer, successful management of the disease requires synthesis of novel compounds. To this end, ongoing attempts to create new candidates include synthesis of multinuclear metal complexes. The high DNA binding affinity and cytotoxic activity of these complexes makes them promising as breast cancer treatments. This study investigated anti-growth/cytotoxic effect of the dinuclear Pd(II) complex on breast cancer cell lines (MCF-7, MDA-MB-231) using various methods of staining, flow cytometry, and immunoblotting. The study conducted colony formation, invasion, and migration assays were to assess the effect of the complex on metastasis. Increased caspase-3/7 levels and positive annexin V staining were observed in both cell lines, proving apoptosis. Altered TNFR1 and TRADD expression with caspase-8 cleavage followed by BCL-2 inactivation with loss of mitochondrial membrane potential confirmed the presence of apoptosis in MCF-7 and MDA-MB-231, regardless of p53 expression status. The results implied anti-migration properties. Finally, the study used the CAM assay to assess antiangiogenic properties and showed that the complex inhibited angiogenesis. The study concluded the dinuclear Pd(II) complex warrants further in vivo experiments to show its potential in the treatment of breast cancer.Yayın Human estrogen receptor alpha (ERα) targeted cyclic peptides inhibit cell growth and induce apoptosis in MCF-7 cells(Walter De Gruyter, 2024) Şentürk, Hilal; Dedeakayoğulları, Huri; Uğur Marion, İlke; Özçubukçu, Salih; Kesici, Mehmet Seçkin; Ünsal Beyge, Şeyma; Acar, Muradiye; Erkısa Genel, Merve; Akbaş, Fahri; Ulukaya, EnginObjectives: Human estrogen receptor alpha (ERα) is considered an important target, especially in the treatment of breast cancer, as it has a vital role in cancer development. ERα-targeted therapies generally target the ligand binding domain (LBD) of ERα. However, over time, cells develop resistance to this mechanism alternative approaches to inhibit ERα activity target ERα–DNA or ERα–cofactor in teractions. Inhibitors of ERα–cofactor interactions are designed by targeting the hydrophobic hollow region of the receptor box LXXLL motif. Methods: In this context, helix-stabilized cyclic peptides (SPs) designed with in silico approaches were obtained by solid phase peptide synthesis. The effects of SPs on MCF-7 cells were examined with MTT and ATP, and qPCR and flow cytometry were used for further analysis. Results: Our results demonstrated that the SPs were effec tive only in MCF-7 cells expressing ERα. In addition, cyclic peptide combinations (SPCs) showed anti-proliferative and toxic effects on MCF-7 cells. The impact of SPCs with the highest inhibitory effect in MCF-7 cells on ERα-related genes and markers of apoptosis was revealed. Moreover, the flow cytometry analysis result used to examine apoptotic cells proved the apoptosis of SPCs in MCF-7 cells. Conclusions: These findings suggest that our novel SPs, which inhibit coactivator interactions of ERα, induce apoptosis of MCF-7 cells. Thus, considering this strong effect of SPs in the inhibition of receptors, it is pointed out that they can be further developed as an alternative to current clinical treatments or as an auxiliary approach in the generating of new targeted peptide-based therapies.Yayın Pd(II) and Pt(II) saccharinate complexes with two phosphine derivatives: Synthesis, anticancer and antiangiogenic activities(Wiley Online Library, 2024) İçsel, Ceyda; Yılmaz, Veysel Turan; Aygun, Muhittin; Erkısa Genel, Merve; Ulukaya, Engin; Akar, Remzi OkanAs clinically used anticancer Pt(II) drugs have severe side effects, there is a growing interest for new metal complexes with great potential for cancer therapy. The current work aimed to prepare and characterize new Pd(II) and Pt(II) saccharinate (sac) complexes bearing pyridyl- and benzyldiphenylphosphines (PPh2Py and PPh2Bz, respectively), cis-[Pd(sac)2(PPh2Py)2] (1), cis-[PtCl(sac)(PPh2Py)2]·0.5DMF (2), cis-[Pd(sac)2(PPh2Bz)2]·DMF (3) and trans-[PtCl(sac)(PPh2Bz)2] (4) as promising anticancer and antiangiogenic drugs. The anticancer activity of the complexes was screened against seven cancer cell lines including HCT116 (colon), HepG2 (liver), MDA-MB-231 (breast), PANC-1 (pancreatic), A549 (lung), C6 (glioma), DU145 (prostate) and normal human lung epithelial cells (BEAS-2B). 1 and 2 did not show biological activity below 20 μM at 48 h, whereas 3 and 4 displayed significant cytotoxic effect on the cancer cells. 4 was the most potent complex (IC50 = 2.2–12.1 μM) and displayed much greater cytotoxicity than cisplatin in all the cancer cell lines. 4 caused apoptosis in HCT116 cells as evidenced by annexin V positivity and caspase 3/7 activity assays. Furthermore, the inhibition of antiapoptotic Bcl-2 proteins by the complex suggested the intrinsic apoptosis. In addition, 4 greatly enhanced generation of intracellular reactive oxygen species (ROS) and consequently caused remarkable DNA double-strand breaks in HCT116 cells. Moreover, the chick chorioallantoic membrane (CAM) assay was used to evaluate antiangiogenic potential of 4. The complex effectively inhibited angiogenesis at a dose of 50 ng, suggesting it as a promising multi-targeted agent for antiangiogenic cancer treatment.