Farmasötik Toksikoloji Ana Bilim Dalı Koleksiyonu

Bu koleksiyon için kalıcı URI

Güncel Gönderiler

Listeleniyor 1 - 3 / 3
  • Yayın
    Differential expression of erythrocyte proteins in patients with alcohol use disorder
    (MDPI Publishing, 2025) Boşgelmez, İffet İpek; Güvendik, Gülin; Dilbaz, Nesrin; Esen, Metin
    Alcohol Use Disorder (AUD) poses global health challenges, and causes hematological alterations such as macrocytosis and oxidative stress. Disruption of protein structures by alcohol and/or its metabolites may exacerbate AUDs; proteomics can elucidate the underlying biological mechanisms. This study examined the proteins differentially ex pressed in the cytosol and membrane fractions of erythrocytes obtained from 30 male patients with AUD, comparing them to samples from 15 age- and BMI-matched social drinkers (SDs) and 15 non-drinkers (control). The analysis aimed to identify the molecular differences related to alcohol consumption. The AUD patient subgrouping was based on mean corpuscular volume (MCV), with 16 individuals classified as having a normal MCV and 14 having a high MCV. Proteins were separated via two-dimensional(2D)-gel electrophoresis, digested with trypsin, and identified via Matrix-Assisted Laser Desorp tion/Ionization Time-of-Flight (TOF) mass spectrometry (MALDI-TOF/TOF). Additionally, levels of malondialdehyde and 4-hydroxyalkenals (MDA + HAE), reduced glutathione (GSH), oxidized glutathione (GSSG), serum carbohydrate-deficient transferrin (%CDT), disialotransferrin (%DST), and sialic acid (SA) were analyzed. The results showed increased MDA + HAE and decreased total thiols in AUD patients, with GSSG elevated and the GSH/GSSG ratio reduced in the AUD MCV-high subgroup. Serum %CDT, %DST, and SA were significantly higher in AUD. Compared to the control profiles, the AUD group exhibited differential protein expression. Few proteins, such as bisphosphoglycerate mu tase, were downregulated in AUD versus control and SD, as well as in the MCV-high AUD subgroup. Conversely, endoplasmin and gelsolin were upregulated in AUD relative to control. Cytoskeletal proteins, including spectrin-alpha chain, actin cytoplasmic 2, were overexpressed in the AUD group and MCV-high AUD subgroup. Several proteins, such as 14-3-3 isoforms, alpha-synuclein, translation initiation factors, heat shock proteins, and others, were upregulated in the MCV-high AUD subgroup. Under-expressed proteins in this subgroup include band 3 anion transport protein, bisphosphoglycerate mutase, tropomyosin alpha-3 chain, uroporphyrinogen decarboxylase, and WD repeat-containing protein 1. Our findings highlight the specific changes in protein expression associated with oxidative stress, cytoskeletal alterations, and metabolic dysregulation, specifically in AUD patients with an elevated MCV. Understanding these mechanisms is crucial for developing targeted interventions and identifying biomarkers of alcohol-induced cellular damage. The complex interplay between oxidative stress, membrane composition, and cellular function illustrates how chronic alcohol exposure affects cellular physiology.
  • Yayın
    Molecular cardiotoxic effects of proteasome inhibitors Carfilzomib and Ixazomib and their combination with dexamethasone involve mitochondrial dysregulation
    (Humana Press, 2023) Jannuzzi, Ayşe Tarbin; Korkmaz, Nalan Sümeyra; Günaydın-Akyıldız, Ayşenur; Arslan Eseryel, Sema; Karademir Yılmaz, Betül; Alpertunga, Buket
    With the development and approval of new proteasome inhibitors, proteasome inhibition is increasingly recognized in cancer therapy. Besides successful anti-cancer effects in hematological cancers, side effects such as cardiotoxicity are limiting effective treatment. In this study, we used a cardiomyocyte model to investigate the molecular cardiotoxic mechanisms of carfilzomib (CFZ) and ixazomib (IXZ) alone or in combination with the immunomodulatory drug dexamethasone (DEX) which is frequently used in combination therapies in the clinic. According to our findings, CFZ showed a higher cytotoxic effect at lower concentrations than IXZ. DEX combination attenuated the cytotoxicity for both proteasome inhibitors. All drug treatments caused a marked increase in K48 ubiquitination. Both CFZ and IXZ caused an upregulation in cellular and endoplasmic reticulum stress protein (HSP90, HSP70, GRP94, and GRP78) levels and DEX combination attenuated the increased stress protein levels. Importantly, IXZ and IXZ-DEX treatments caused upregulation of mitochondria fission and fusion gene expression levels higher than caused by CFZ and CFZ-DEX combination. The IXZ-DEX combination reduced the levels of OXPHOS proteins (Complex II-V) more than the CFZ-DEX combination. Reduced mitochondrial membrane potential and ATP production were detected with all drug treatments in cardiomyocytes. Our findings suggest that the cardiotoxic effect of proteasome inhibitors may be due to their class effect and stress response and mitochondrial dysfunction may be involved in the cardiotoxicity process.
  • Yayın
    Ubiquitin proteasomal system is a potential target of the toxic effects of organophosphorus flame retardant triphenyl phosphate
    (Elsevier, 2022) Jannuzzi, Ayse Tarbin; Yılmaz Göler, Ayşe Mine; Alpertunga, Buket
    The consumption of the widely used flame retardant Triphenyl phosphate (TPP) is increasing. It is now frequently detected in the environment and also domestically. Although the possibility of dermal exposure to TPP is quite high, little is known about its potential molecular toxicity mechanisms. In this study, we found that TPP caused cytotoxicity on human skin keratinocytes (HaCaT) and significantly inhibited the proliferation and cell migration in a concentration-dependent manner. Additionally, HaCaT cells were sensitive to TPP-induced apoptosis. Reactive oxygen species production was induced with TPP, which increased the protein carbonyla- tion and lipid peroxidation levels. Moreover, TPP inhibited proteasome activity and increased the accumulation of ubiquitinated proteins. Exposure to TPP significantly increased the HSP90, HSP70, GRP94 and GRP78 protein levels. Overall, our findings indicate that TPP may pose a risk to human health and contribute to the current understanding of the risks of TPP at the molecular level.