Testing the performance of feature selection methods for customer churn analysis: Case study in B2B business
dc.authorid | 0000-0002-4958-4575 | en_US |
dc.authorscopusid | 55355863500 | en_US |
dc.authorwosid | GHQ-7349-2022 | en_US |
dc.contributor.author | Sancar, Semanur | |
dc.contributor.author | Uzun-Per, Meryem | |
dc.contributor.editor | García Márquez, Fausto Pedro | |
dc.contributor.editor | Jamil, Akhtar | |
dc.contributor.editor | Eken, Süleyman | |
dc.contributor.editor | Hameed, Alaa Ali | |
dc.date.accessioned | 2023-04-11T11:21:12Z | |
dc.date.available | 2023-04-11T11:21:12Z | |
dc.date.issued | 2023 | en_US |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description.abstract | Churn analysis has recently become one of the favorite topics of marketing teams with the development of machine learning models. This study aims to discover the most suitable feature selection (FS) model for churn analysis by using the databases of BiletBank, a business-to-business (B2B) company. It was found that some categorical data such as agency type and currency used by customers, along with periodic flight sales data, are also meaningful features for churn analysis in the BiletBank customer portfolio. This feature selection study in the database will be a source for future churn analysis studies. | en_US |
dc.identifier.citation | Sancar, S., & Uzun-Per, M. (2023). Testing the performance of feature selection methods for customer churn analysis: Case study in B2B business. F.P. García Márquez, A. Jamil, S. Eken, A.A. Hameed, (Eds.), International Conference on Computing, Intelligence and Data Analytics (pp 509-519). Springer: Cham. https://doi.org/10.1007/978-3-031-27099-4_39 | en_US |
dc.identifier.doi | 10.1007/978-3-031-27099-4_39 | en_US |
dc.identifier.endpage | 519 | en_US |
dc.identifier.isbn | 9783031270994 | |
dc.identifier.isbn | 9783031270987 | |
dc.identifier.scopus | 2-s2.0-85151063013 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 509 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-031-27099-4_39 | |
dc.identifier.uri | https://hdl.handle.net/20.500.13055/442 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Uzun-Per, Meryem | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | International Conference on Computing, Intelligence and Data Analytics | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Customer Churn Analysis | en_US |
dc.subject | Feature Selection | en_US |
dc.subject | B2B | en_US |
dc.subject | Sequential Forward Selection | en_US |
dc.subject | Sequential Backward Selection | en_US |
dc.subject | Classification | en_US |
dc.subject | Logistic Regression | en_US |
dc.subject | Support Vector Machines | en_US |
dc.subject | Random Forest Classifier | en_US |
dc.subject | Extra Tress Classifier | en_US |
dc.title | Testing the performance of feature selection methods for customer churn analysis: Case study in B2B business | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Kapalı Erişim
- İsim:
- Testing the Performance of Feature Selection Methods for Customer Churn Analysis Case Study in B2B Business.pdf
- Boyut:
- 12.57 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
Kapalı Erişim
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: