MelanoTech: Development of a mobile application infrastructure for melanoma cancer diagnosis based on artificial intelligence technologies
dc.authorid | 0000-0002-2126-8757 | |
dc.contributor.author | Tokatlı, Nazlı | |
dc.contributor.author | Bilmez, Yakuphan | |
dc.contributor.author | Göztepeli, Gürkan | |
dc.contributor.author | Güler, Muhammed | |
dc.contributor.author | Karan, Furkan | |
dc.contributor.author | Altun, Halis | |
dc.date.accessioned | 2024-10-23T08:32:18Z | |
dc.date.available | 2024-10-23T08:32:18Z | |
dc.date.issued | 2024 | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Yazılım Mühendisliği Bölümü | |
dc.description.abstract | This preliminary work introduces MelanoTech, a mHealth application designed and implemented to offer a user-friendly and intuitive interface for the early diagnosis of melanoma, a kind of skin cancer with significant fatality rates [1]. The application demonstrates promising performance in segmentation and classification tasks by utilizing deep learning models with Generative Adversarial Networks (GANs) for data augmentation. MelanoTech achieves a comprehensive accuracy rate of 92%, with a segmentation model accuracy rate of 93% and a lesion detection accuracy rate of 90%. Finally, incorporating data augmentation approaches based on GANs resulted in a 5% enhancement in the model’s performance. These findings highlight the capacity of MelanoTech as a dependable tool for improving the early diagnosis of melanoma and decreasing the workload of physicians in Turkish public hospitals. | |
dc.identifier.citation | Tokatlı, N., Bilmez, Y., Göztepeli, G., Güler, M., Karan, F. & Altun, H. (2024). MelanoTech: Development of a mobile application infrastructure for melanoma cancer diagnosis based on artificial intelligence technologies. 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 1-6. Malatya, Turkiye. https://doi.org/10.1109/IDAP64064.2024.10710812 | |
dc.identifier.doi | 10.1109/IDAP64064.2024.10710812 | |
dc.identifier.endpage | 6 | |
dc.identifier.scopus | 2-s2.0-85207880802 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://doi.org/10.1109/IDAP64064.2024.10710812 | |
dc.identifier.uri | https://hdl.handle.net/20.500.13055/834 | |
dc.institutionauthor | Tokatlı, Nazlı | |
dc.institutionauthor | Bilmez, Yakuphan | |
dc.institutionauthor | Göztepeli, Gürkan | |
dc.institutionauthor | Güler, Muhammed | |
dc.institutionauthor | Karan, Furkan | |
dc.institutionauthor | Altun, Halis | |
dc.institutionauthorid | 0000-0002-2126-8757 | |
dc.language.iso | en | |
dc.publisher | IEEE | |
dc.relation.ispartof | 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP) | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Artificial Intelligence applicaitons in Healthcare Systems | |
dc.subject | Melanoma Detection | |
dc.subject | Mobile Health Applications | |
dc.subject | Deep Learning Techniques | |
dc.subject | Dermoscopic Imaging | |
dc.title | MelanoTech: Development of a mobile application infrastructure for melanoma cancer diagnosis based on artificial intelligence technologies | |
dc.type | Conference Object | |
dspace.entity.type | Publication |