On the big data processing algorithms for finding frequent sequences
dc.authorid | 0000-0002-4958-4575 | en_US |
dc.authorscopusid | 55355863500 | en_US |
dc.authorwosid | GHQ-7349-2022 | en_US |
dc.contributor.author | Can, Ali Burak | |
dc.contributor.author | Zaval, Mounes | |
dc.contributor.author | Uzun-Per, Meryem | |
dc.contributor.author | Aktaş, Mehmet Sıddık | |
dc.date.accessioned | 2023-03-01T07:20:26Z | |
dc.date.available | 2023-03-01T07:20:26Z | |
dc.date.issued | 2023 | en_US |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description.abstract | Sequential pattern mining algorithms extract trendy sequence appearances insideordered transactional datasets such as market basket datasets. There is a lack ofresearch employing big data processing techniques to locate frequent sequences onlarge-scale datasets. Furthermore, there is a need for optimized sequential patternmining algorithms that run on ordered one-dimensional sequences. We also observe alack of sequential pattern search studies in the literature, where the focus is centeredaround multi-dimensional data sequences. Existing approaches that deal with orderedone-dimensional datasets suffer from scalability issues as the amount of data to beanalyzed is enormous. This research investigates the big data processing techniquesused to find frequent sequences in large-scale datasets. It also proposes a scalablesequence pattern mining algorithm called Sequential Pattern Acquisition by ReducingSearch Space (SPARSS) designed for distributed data processing systems that effi-ciently handle large datasets containing sequential one-element data. It introducesa prototype implementation of SPARSS and provides information on the SPARSS’smemory and time requirements, which were calculated as part of experimental stud-ies on a real-world dataset. The results confirm our expectations and demonstrateSPARSS’s superior scalability and run-time efficiency compared to other distributedalgorithms. | en_US |
dc.identifier.citation | Can, A. B., Zaval, M., Uzun-Per, M., & Aktaş, M. S. (2023). On the big data processing algorithms for finding frequent sequences. Concurrency and Computation: Practice and Experience, 35(24), pp.1-17. https://doi.org/10.1002/cpe.7660 | en_US |
dc.identifier.doi | 10.1002/cpe.7660 | en_US |
dc.identifier.endpage | 17 | en_US |
dc.identifier.issn | 1532-0626 | |
dc.identifier.issn | 1532-0634 | |
dc.identifier.issue | 24 | en_US |
dc.identifier.scopus | 2-s2.0-85148655130 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://doi.org/10.1002/cpe.7660 | |
dc.identifier.uri | https://hdl.handle.net/20.500.13055/401 | |
dc.identifier.volume | 35 | en_US |
dc.identifier.wos | WOS:000934843100001 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak.other | SCI-E - Science Citation Index Expanded | en_US |
dc.institutionauthor | Uzun-Per, Meryem | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.ispartof | Concurrency and Computation: Practice and Experience | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Apache Spark | en_US |
dc.subject | Big Data | en_US |
dc.subject | Distributed Systems | en_US |
dc.subject | DLA | en_US |
dc.subject | GSP | en_US |
dc.subject | Prefixspan | en_US |
dc.subject | Sequential Pattern Mining | en_US |
dc.title | On the big data processing algorithms for finding frequent sequences | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Kapalı Erişim
- İsim:
- On the big data processing algorithms for finding frequent sequences.pdf
- Boyut:
- 2.39 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Tam Metin / Full Text
Lisans paketi
1 - 1 / 1
Kapalı Erişim
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: