Lowered phase transition temperature of VO2(m) via molybdenum doping toward efficient aqueous zinc-ion batteries

dc.authorid0000-0003-0631-9453
dc.authorid0000-0002-1589-4735
dc.authorid0000-0001-8178-0165
dc.contributor.authorAydın Şahin, Selay
dc.contributor.authorAydoğdu, Büşra
dc.contributor.authorYaman Uzunoğlu, Gülşah
dc.contributor.authorYüksel, Recep
dc.date.accessioned2025-11-05T13:46:14Z
dc.date.available2025-11-05T13:46:14Z
dc.date.issued2025
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Kimya Mühendisliği Bölümü
dc.description.abstractRechargeable aqueous zinc-ion batteries have attracted considerable attention as large-scale energy storage systems owing to their safety, sustainability, and cost-effectiveness. However, their practical application has been hindered by limited energy density, primarily determined by cathode performance. Among transition metal oxides, vanadium dioxide (VO2) is particularly appealing due to its layered structure, rich polymorphism, and ability to host Zn2+ ions reversibly. The thermally driven transition from insulating VO2(M) to conductive VO2(R) enhances charge transport through the metal–insulator transition (MIT). In this work, molybdenum doping is employed to lower the MIT temperature of VO2(M). Doping reduces the MIT temperature of the VO2(M) phase to 56.7 °C, resulting in the VO2(R) phase. Electrochemical measurements reveal that Mo-VO2(R) cathodes deliver up to ten times higher capacity than the pristine VO2(M), with 3Mo-VO2(R) reaching 404.8 mAh g–1 at 0.1 A g–1. These findings demonstrate that Mo doping serves as a practical approach to modify VO2(M) and decrease the MIT temperature, while improving electrochemical performance. Moreover, the heteroatom doping strategy suggests a promising pathway for developing other VO2 cathodes for efficient rechargeable batteries, which can leverage the heat dissipated in energy storage systems.
dc.identifier.citationAydın Şahin, S., Aydoğdu, B., Yaman Uzunoğlu, G., & Yüksel, R. (2025). Lowered phase transition temperature of VO2(m) via molybdenum doping toward efficient aqueous zinc-ion batteries. Batteries & Supercaps, pp. 1-11. https://doi.org/10.1002/batt.202500702
dc.identifier.doi10.1002/batt.202500702
dc.identifier.endpage11
dc.identifier.issn2566-6223
dc.identifier.scopus2-s2.0-105019499926
dc.identifier.scopusqualityQ1
dc.identifier.startpage1
dc.identifier.urihttps://doi.org/10.1002/batt.202500702
dc.identifier.urihttps://hdl.handle.net/20.500.13055/1162
dc.identifier.wosWOS:001599162700001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.indekslendigikaynak.otherSCI-E - Science Citation Index Expanded
dc.institutionauthorYaman Uzunoğlu, Gülşah
dc.institutionauthorid0000-0002-1589-4735
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofBatteries & Supercaps
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleLowered phase transition temperature of VO2(m) via molybdenum doping toward efficient aqueous zinc-ion batteries
dc.typeArticle
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Kapalı Erişim
İsim:
Tam Metin / Full Text
Boyut:
1.76 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
Kapalı Erişim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: